Blog

AI vs. Machine Learning — What's the Difference?

AI vs. Machine Learning — What's the Difference?
The main difference between artificial intelligence and machine learning is that AI is a complete system that relies on many complex subsystems. Among those subsystems is machine learning, a tool that uses data and algorithms to improve over time, much like humans. The success of an individual AI system is dependent on the efficacy of its subsystems.
green apostrophes Deepscribe

AI vs. Machine Learning — What’s the Difference?

The difference between artificial intelligence and machine learning is sometimes hard to pin down. It’s easy to take the terms at face value and to even lump them together as the same general thing. But, as deep technology develops, it’s important to understand its unique qualities so that we can make informed decisions about its applications, especially as it permeates deeper into our everyday lives.


The Difference Between AI and Machine Learning

The main difference between artificial intelligence and machine learning is that AI is a complete system that relies on many complex subsystems. Among those subsystems is machine learning, a tool that uses data and algorithms to improve over time. The success of an individual AI system is dependent on the efficacy of its subsystems.

The relationship between AI and machine learning is similar to how humans operate and complete tasks. We have the ability to listen, learn, think, and complete complex tasks, but in order to do that, we need all of our subsystems to be working well with each other. We can’t ride a bike without air in our lungs, or blood in our veins; certainly not without a brain or a beating heart. AI is the same way. It is capable of completing complex tasks, but not without everything working together. 

Machine learning is simply the subsystem that allows AI to learn and build upon past experiences to help navigate future scenarios. It relies on various algorithms and learning skills that allow it to develop, get better, and, eventually, make AI less error-prone and more human-like.


Common Machine Learning Algorithms

Supervised Learning

A common algorithm that is used in the earlier stages of machine learning is called “Supervised Learning.” Supervised learning is a form of human supervision that is required to teach a system to identify certain variable inputs and then map them to the correct variable outputs. As the machine makes mistakes and is corrected, it accumulates more and more data, which eventually allows it to map the input to the correct output without any supervision.

Back to our bike riding example: When we’re young kids, we need an adult to help us get on the bike, help us pedal, brake, and find our balance. Over time, the adult takes their hands off the handlebars and watches us from the sidewalk as we ride down the street — picking us up when we fall down and scrape a knee, then sending us on our way again.

Over time, the adult will go inside and occasionally take a peek out the window to make sure everything is going smoothly. Eventually, they won’t even worry about us when we go outside to ride the bike. From supervised to unsupervised. 

Supervised learning algorithms are essential for the growth of emerging AI technology, even though there may be growing pains. This process requires buy-in from both developers and users as AI systems get rolling, just like in that bike riding scenario.


Reinforcement Learning

Reinforcement learning is another common machine learning algorithm used in the development of AI. Reinforcement learning is when machines are placed in an unknown environment and tasked with completing a certain goal. The closer the system gets to completing that goal, the more they are rewarded. The machine will learn to maximize their cumulative reward, in turn teaching the AI how to complete more complex tasks.

Reinforcement learning is just like training a dog. First, the dog learns to sit by being rewarded with a treat when it completes that task. Over time, as the tasks get more complex, the reward either gets more robust or the reward for simple tasks (i.e. just sitting) shrinks. Every time the dog completes a task its behavior is reinforced by the reward. Over time, the dog will be able to sit, stay, lay down, shake, etc. and eventually the reward will be removed altogether.

Reinforcement learning has historically been used in online gaming settings like chess, where a CPU learns to compete against a human opponent at increasing difficulties based on how the user performs against the system over time. In recent years, applications of reinforcement learning have developed significantly, and now the algorithm is commonly used to train systems that perform tasks in the physical world. Tasks that have to be completed, and completed safely.

A common example of this is in the learning process of self-driving cars. For example, a simulation might task the machine with keeping the vehicle inside the lanes of a road, where the goal is to keep the occupants safe and alive. Increasing success teaches the system to understand the task and how to complete it in future scenarios. Another application of reinforcement learning is in simulations with robotic surgeons, where the robot learns skills and task frameworks that keep humans safe during surgery. Remember Operation

These more current examples of reinforcement learning have more severe consequences if failed in the real world, which is why developers can’t expect buy-in from users until the system is properly vetted and trained.


Other AI Subsystems

While machine learning is one of the most critical foundational pieces of AI, there are many other subsystems that different AI systems use to complete different tasks. Here are a few:


Natural Language Processing

NLP is used by AI to identify speakers and classify spoken words into data sets that can be analysed, grouped, and understood in context.

Neural Networks

Neural networks are designed to mimic the behavior of the neurons in the human brain. They are used to recognize relationships and trends within data sets.

Computer Vision

Computer vision uses advanced learning models to identify and extract meaningful information from digital media like videos and images.


Transition Gray Line
Free telemedicine platform

Workflow designed
by doctors, for doctors.

See it in action
Resources

Learn more from others

Watch videoLearn MoreLearn More
Watch videoLearn MoreLearn More
Watch videoLearn MoreLearn More
Line transition
Blog

AI vs. Machine Learning — What's the Difference?

Input your email below to see DeepScribe work during a patient encounter.

Thanks! You unlocked the video!
Watch Video Now
Oops! Something went wrong while submitting the form.
Have a question?

Get in Touch

Bring the joy of care back to your practice today.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Line transition
Resources

Learn more from others

Watch videoLearn MoreLearn More
Watch videoLearn MoreLearn More
Watch videoLearn MoreLearn More
Line transition